Machine Minimization

ECE 152A - Summer 2009

Reading Assignment

- Brown and Vranesic
 - 8 Synchronous Sequential Circuits
 - 8.6 State Minimization
 - □ 8.6.1 Partitioning Minimization Procedure
 - 8.6.2 Incompletely Specified FSMs

August 19, 2009

ECE 152A - Digital Design Principles

Reading Assignment

■ Roth

- 15 Reduction of State Tables / State Assignment
 - 15.1 Elimination of Redundant States
 - 15.2 Equivalent States
 - 15.3 Determination of State Equivalence Using an Implication Table
 - 15.4 Equivalent Sequential Circuits
 - 15.5 Incompletely Specified State Tables

August 19, 2009

ECE 152A - Digital Design Principles

3

Elimination of Redundant States

- Row Matching
 - Recall CD player controller
 - Mealy implementation contained two sets of rows with same next state and output
 - Eliminate redundant states
- Row matching doesn't identify "equivalent states"
 - □ Row matching identifies "same state"
 - Equivalent states are the more general case

August 19, 2009

ECE 152A - Digital Design Principles

Equivalent States

- Definitions of equivalent states
 - □ Roth: 2 states equivalent iff for every single input *x*, outputs are the same and next states are equivalent (as opposed to row matching)
 - Pairwise comparison using implication table
 - □ Kohavi : Iff for every possible input sequence the same output sequence will be produced regardless of whether S_i or S_i is the initial state
 - Moore reduction procedure to find equivalence partition

August 19, 2009

ECE 152A - Digital Design Principles

5

Determination of State Equivalence using an Implication Table

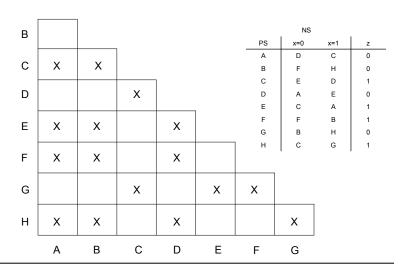
■ Find Equivalent Pairs

	INS				
	PS	PS x=0 x=1			
А		D	С	0	
	В	F	Н	0	
	С	E	D	1	
	D	Α	Е	0	
	E	С	Α	1	
	F	F	В	1	
	G	В	Н	0	
		l .		l .	

August 19, 2009

ECE 152A - Digital Design Principles

С

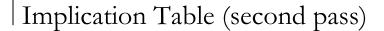

- (1) Construct Implication Table for Pairwise Comparison
- (2) First Pass
 - Compare outputs
 - For states to be equivalent, next state and output must be the same
 - Put "X's" where outputs differ

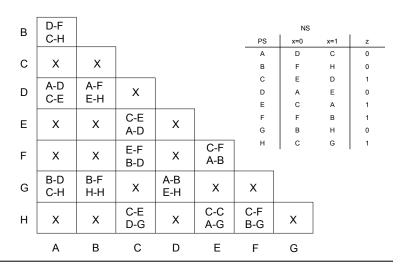
August 19, 2009

ECE 152A - Digital Design Principles

7

Implication Table (first pass)


August 19, 2009


ECE 152A - Digital Design Principles

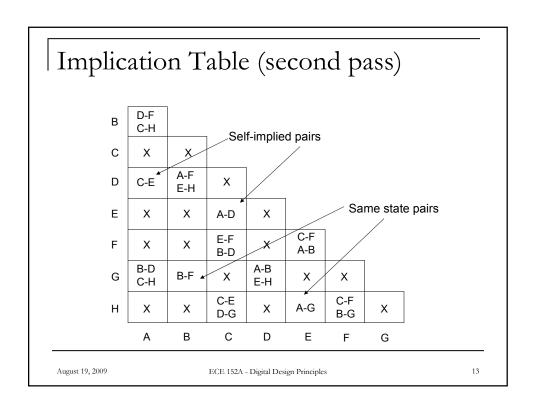
(3) One column (or row) at a time, find implied pairs

August 19, 2009

ECE 152A - Digital Design Principles

August 19, 2009

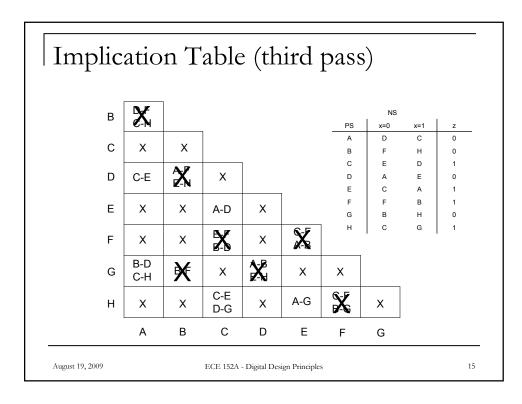
ECE 152A - Digital Design Principles


- (3) One column (or row) at a time, find implied pairs (cont)
 - Remove self implied pairs
 - A-D in cell A-D
 - C-E in cell C-E
 - Remove same state pairs
 - H-H in cell B-G
 - C-C in cell H-E

August 19, 2009

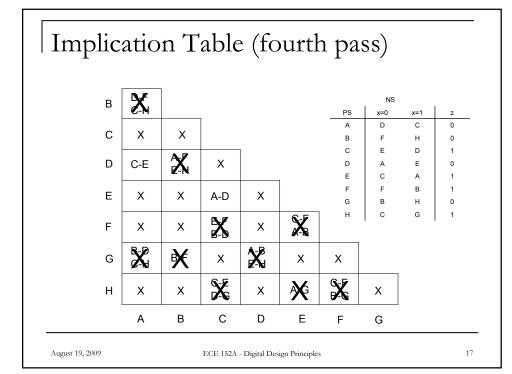
ECE 152A - Digital Design Principles

11


Implication Table (second pass) D-F В C-H Self-implied pairs С Х A-D4 A-F D Χ C-E E-H C-E Same state pairs Ε Χ Χ Χ A-D C-F E-F Χ Χ A-B B-D B-D A-B Χ Χ G Χ Н-Н E-H C-E C-C C-F Н Χ Χ Χ Χ D-G A-G B-G Α С G В D Ε F August 19, 2009 12 ECE 152A - Digital Design Principles

(4) One column (or row) at a time, eliminate implied pairs

August 19, 2009


ECE 152A - Digital Design Principles

- (5) Next pass, one column (or row) at a time, eliminate implied pairs
- (6) Continue until pass results in no further elimination of implied pairs

August 19, 2009

ECE 152A - Digital Design Principles

- (7) Combine equivalent states (based on coordinates of cells, not contents)
 - □ $A \equiv D, C \equiv E \text{ in example}$
 - Equivalence is pairwise
 □ A ≡ B, B ≡ C implies A ≡ C (transitive)
- (8) Construct reduced state table

August 19, 2009

ECE 152A - Digital Design Principles

■ Reduced State Table

□ * indicates change from original state table

NS						
PS	PS x=0 x=1					
Α	A*	С	0			
В	F	Н	0			
С	C*	A*	1			
F	F	В	1			
G	В	Н	0			
Н	С	G	1			
C F G	C* F B	A* B H	1			

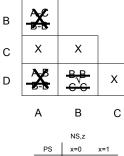
August 19, 2009

ECE 152A - Digital Design Principles

19

Determination of State Equivalence using an Implication Table

- Row Matching on an Implication Table
 - Mealy Machine outputs
 - Recall 101 sequence detector (direct Mealy conversion)


NS,z					
x=0	x=1				
A,0	B,0				
C,0	B,0				
A,0	D,1				
C,0	B,0				
	A,0 C,0 A,0				

August 19, 2009

ECE 152A - Digital Design Principles

Implication Table

- Same state pairs
- Eliminate implied pairs
- Matching rows
 - No implied pairs
 - B and D are "same state"

NS,z					
PS	x=0	x=1			
Α	A,0	B,0			
В	C,0	B,0			
С	A,0	D,1			
D	C,0	B,0			

August 19, 2009

ECE 152A - Digital Design Principles

21

Moore Reduction Procedure

■ States S_i and S_j of machine M are said to be equivalent If and only if, for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_i is the initial state

Zvi Kohavi, Switching and Finite Automata Theory

August 19, 2009

ECE 152A - Digital Design Principles

- Two states, S_i and S_j , of machine M are <u>distinguishable</u> if and only if there exists at least one finite input sequence which, when applied to M, causes different output sequences depending on whether S_i or S_j is the initial state
 - □ The sequence which distinguishes these states is called a <u>distinguishing sequence of the pair (S_i, S_i)</u>

August 19, 2009

ECE 152A - Digital Design Principles

23

Moore Reduction Procedure

- If there exists for pair (S_i, S_j) a distinguishing sequence of length \underline{k} , the states in (S_i, S_j) are said to be \underline{k} -distinguishable
 - States that are not k-distinguishable are said to be k-equivalent

August 19, 2009

ECE 152A - Digital Design Principles

- The result sought is a partition of the states of M such that two states are in the same block if and only if they are equivalent
 - □ *P*₀ corresponds to 0-distinguishablity (includes all states of machine M)
 - P₁ is obtained simply by inspecting the table and placing those states having the same outputs, under all inputs, in the same block
 - P₁ establishes the sets of states which are 1-equivalent

August 19, 2009

ECE 152A - Digital Design Principles

25

Moore Reduction Procedure

- Obtain partition P₂
 - □ This step is carried out by splitting blocks of P₁, whenever their successors are not contained in a common block of P₁
- Iterate process of splitting blocks
 - □ If for some k, $P_{k+1} = P_k$, the process terminates and P_k defines the sets of equivalent states of the machine
 - □ P_k is thus called the equivalence partition
 - The equivalence partition is unique

August 19, 2009

ECE 152A - Digital Design Principles

Recall state table from earlier example

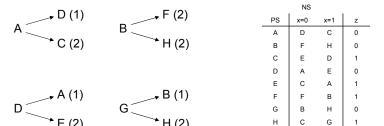
NS				
PS	x=0	x=1	z	
Α	D	С	0	
В	F	Н	0	
С	E	D	1	
D	Α	Е	0	
Е	С	Α	1	
F	F	В	1	
G	В	Н	0	
Н	С	G	1	

August 19, 2009

ECE 152A - Digital Design Principles

27

Moore Reduction Procedure

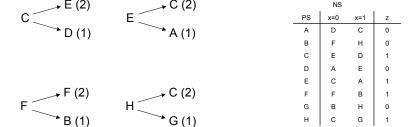

- P_0 = (ABCDEFGH)
- P₁ is obtained by splitting states having different outputs
 - $P_1 = (ABDG)(CEFH)$
 - Block 1 = ABDG, Block 2 = CEFH

PS	x=0	x=1	z
Α	D	С	0
В	F	Н	0
С	E	D	1
D	Α	E	0
E	С	Α	1
F	F	В	1
G	В	Н	0
Н	С	G	1

August 19, 2009

ECE 152A - Digital Design Principles

- Obtain P₂
 - □ Block 1 = ABDG, Block 2 = CEFH


August 19, 2009

ECE 152A - Digital Design Principles

2

Moore Reduction Procedure

- Obtain P₂ (cont)
 - □ Block 1 = ABDG, Block 2 = CEFH

August 19, 2009

ECE 152A - Digital Design Principles

- Split B out of block 1
 - □ B is "2 distinguishable" from A, D and G
- No states of block 2 are "2 distinguishable"
- P₂ = (ADG)(B)(CEFH)
 - □ Block 1 = ADG
 - □ Block 2 = B
 - □ Block 3 = CEFH

August 19, 2009

ECE 152A - Digital Design Principles

31

Moore Reduction Procedure

■ Obtain P₃

$$P_2 = (ADG)(B)(CEFH)$$

Α	D	С	0
В	F	Н	0
С	E	D	1
D	Α	E	0
Ε	С	Α	1
F	F	В	1
G	В	Н	0
Н	С	G	1

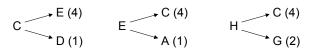
August 19, 2009

ECE 152A - Digital Design Principles

- Obtain P₃ (cont)
 - □ Split G from block 1
 - G is 3-distinguishable from A and D
 - □ Split F from block 3
 - F is 3-distinguishable from C, E and H
- \blacksquare P₃ = (AD)(G)(B)(CEH)(F)
 - □ Block 1 = AD, block 2 = G, block 3 = B, block 4 = CEH and block 5 = F

August 19, 2009

ECE 152A - Digital Design Principles


33

Moore Reduction Procedure

■ Obtain P₄

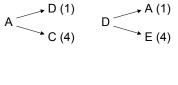
$$P_3 = (AD)(G)(B)(CEH)(F)$$

. , , , ,	, , , ,			•	ľ
		В	F	Н	0
		С	E	D	1
		D	Α	E	0
		E	С	Α	1
→ D (1)	→ A (1)	F	F	В	1
_	D _	G	В	Н	0
C (4)	E (4)	Н	С	G	1
` '	` '				

August 19, 2009

ECE 152A - Digital Design Principles

- Obtain P₄ (cont)
 - □ Split H from block 4
 - H is 4-distinguishable from C and E
- $P_4 = (AD)(G)(B)(CE)(H)(F)$
 - □ Block 1 = AD, block 2 = G, block 3 = B, block 4 = CEH, block 5 = H and block 6 = F


August 19, 2009

ECE 152A - Digital Design Principles

35

Moore Reduction Procedure

- Obtain P₅
 - $P_4 = (AD)(G)(B)(CE)(H)(F)$

E (4)	_ C (4)
C D (1)	E A (1)

NS					
PS	z				
Α	D	С	0		
В	F	Н	0		
C	E	D	1		
D	Α	E	0		
E	С	Α	1		
F	F	В	1		
G	В	Н	0		
Н	С	G	1		

August 19, 2009

ECE 152A - Digital Design Principles

- Obtain P₅ (cont)
 - No blocks split from P₅
- $P_5 = P_4 = (AD)(G)(B)(CE)(H)(F)$
 - \square P₅ = P₄ = equivalence partition
 - □ Same result as implication table

August 19, 2009

ECE 152A - Digital Design Principles

37

Reduction of Incompletely Specified State Tables

Use "modified row matching" to combine states

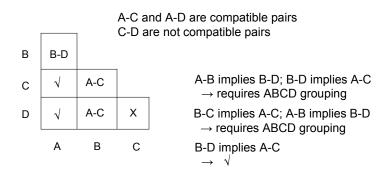
	NS		Z		
PS	x=0	x=1	x=0	x=1	
Α	-	В	-	-	A and C can be combined
В	С	D	-	-	A and D can be combined
С	Α	-	0	-	
D	Α	-	1	-	C and D cannot (outputs differ)

August 19, 2009

ECE 152A - Digital Design Principles

Reduction of Incompletely Specified State Tables

- Using an Implication Table
 - State pairs are compatible, not equivalent
 - □ States must be "pairwise" compatible
 - ABC requires A-B, B-C and A-C
 - Compatible relationship is not transitive like equality
 - Compatible pairs must be grouped and included in reduced machine


August 19, 2009

ECE 152A - Digital Design Principles

39

Reduction of Incompletely Specified State Tables

lacksquare $\sqrt{\ }$ indicates "compatible pair"

August 19, 2009

ECE 152A - Digital Design Principles

Reduction of Incompletely Specified State Tables

- Heuristic (non-deterministic) process
 - □ Requires "trial and error"
 - Not necessarily minimal

	NS		Z	
PS	x=0	x=1	x=0	x=1
AC	AC	BD	0	-
BD	AC	BD	1	-

August 19, 2009

ECE 152A - Digital Design Principles